exaBase Studio Platform Engineer (MLOps)
- Tokyo
- Remote OK
- Full-time
- November 12, 2023
職務内容
exaBase Studio is a low-code development platform for software with machine learning that simplifies the deployment and management of machine learning models and enables functionality design through a GUI. Currently, the alpha version has been released, and development is progressing while conducting test releases and expanding features.
We are currently seeking out MLOps Engineers that can think and act according to their own will, work in a team with a professional mind and a passion and commit themselves to producing results. You will develop and enhance products on top of the exaBase Studio platform and work in collaboration with the exaBase Studio development team to meet business needs.
ExaWizards provides an environment where you can actively take on challenges with outstanding colleagues to improve society.
Use your creativity and driving force to create a better world with us!
======
exaBase Studioは、
自分の意志で考え行動し、
エクサウィザーズには、社会をより良くするために、
あなたの創造力と行動力で、
必須(MUST)
- Develop applications using async or concurrent Python or another high level programming language
- Automate deployment of services and jobs using CI/CD tools
- Experience or knowledge of deploying and operating applications on Kubernetes cluster
- Good understanding of ML concepts
- Strong interpersonal skills; able to work independently as well as in a team
- Ability to operate on AWS in a cost-effective way
- Experience using IaC exclusively to manage and provision infrastructure
===== - 非同期または並行処理のPythonやその他の高度なプログラミング言語を使用したアプリケーションの開発
- CI/CDツールを用いたサービスやジョブのデプロイの自動化
- Kubernetesクラスタ上でのアプリケーションのデプロイと運用の経験または知識
- 機械学習の概念の理解
- コミュニケーション能力; チーム内だけでなく単独でも仕事ができること
- AWS上で費用対効果の高い運用ができること
- インフラの管理とプロビジョニングのためにIaCを使用した経験
歓迎(WANT)
- Experience with data validation and versioning
- Experience working with data scientists and/or ML engineers and building auto-scaling ML systems
- Experience in operationalization of ML projects using at least one of the popular frameworks or platforms (e.g. Kubeflow, AWS Sagemaker, Google AI Platform, Azure Machine Learning, DataRobot, DKube, etc.).
- Strong knowledge of ML models (linear regression, ensemble methods, boosting, RNN, CNN, GCN, GAN, etc.)
- Bi-lingual (business English & Japanese daily conversation OR English daily conversation & Japanese native)
===== - データ検証やバージョン管理の経験
- データサイエンティストおよび/またはMLエンジニアと協働し、自動スケール可能なMLシステムを構築した経験
- 一般的なフレームワークやプラットフォーム(Kubeflow、AWS Sagemaker、Google AI Platform、Azure Machine Learning、DataRobot、DKubeなど)の少なくとも1つを使用したMLプロジェクトの運用経験。
- MLモデルに関する知識(線形回帰、アンサンブル法、ブースティング、RNN、CNN、GCN、GANなど)。
- バイリンガル(ビジネス英語&日本語日常会話or英語日常会話&日本語ネイティブ)
Job Responsibilities
- Research and implement various ML tools and frameworks
- Development and operation of platforms that provide scalable ML API
- Integrate tools and streamline processes to shorten development cycles for our ML based products and projects:
- Provide necessary tooling to allow machine learning engineers to build and automate ML workstreams from data analysis, experimentation, operationalization, model training, model tuning to visualization
- Create, improve and maintain our automated CI/CD pipelines for ML services
- Increase our deployment velocity, including the process for deploying models and data pipelines into production
- Conduct internal training and technical sharings about ML operations, tools usage and benefits
- Come up with creative solutions to solve social issues using AI/MLOps
=====
職務内容
- 各種 機械学習ツールやフレームワークの研究・実装
- スケーラブルなML APIを提供するプラットフォームの開発・運用
- 機械学習を用いたプロダクトやプロジェクトの開発サイクルを短縮するためのツールの統合とプロセスの合理化
- 機械学習エンジニアがデータ分析、実験、運用、モデルトレーニング、モデルチューニングから可視化までの、機械学習ワークストリームの構築、自動化するために必要なツールの提供
- 機械学習モデル・サービスの自動化されたCI/CDパイプラインの作成、改善、メンテナンス
- モデルやデータパイプラインの本番環境へのデプロイのプロセスを含む、デプロイ速度の向上
- 機械学習モデル・システムの運用、ツールの使い方、メリットに関する社内トレーニングや技術共有の実施
- AI/MLOpsを活用した社会課題解決のためのソリューションの考案
About ExaWizards
ExaWizards is an AI start-up with a simple mission: solve social issues using AI and create a happy society. But to achieve it, they’re tackling issues across a wide variety of industries: Care tech, HR, fintech, medicine, security and more. They believe AI can help solve problems in all these areas, and they’re determined to do just that. Their business model can be broken into two different flows: project-focused and product-focused. For project-focused initiatives, they start from scratch. Their ML engineers and consultants identify business problems and build models aimed at solving them. In their product flow, they take the ML models developed for specific problems and generalize them to be useful for a wider array of problems. Normally they develop these solutions into SaaS products.
Get Job Alerts
Sign up for our newsletter to get hand-picked tech jobs in Japan – straight to your inbox.